Basics of Pressure Ulcer Prevention and Wound Care

UNM- Health Sciences Center
Department of Pediatrics
Continuum of Care

Vera Asplund, BSN, RN

September 9, 2014
Objectives

• The attendee will be able to identify 3 common causes of pressure ulcers

• The attendee will be able to list 3 factors which impact healing of pressure ulcers

• The attendee will be able to identify the stages of pressure ulcers

• The attendee will be able to identify 3 strategies to prevent pressure ulcer formation
Skin

• The skin is the largest organ of the body and provides the interface between the body and the rest of the world

• The skin provides the first line of host defense mechanisms and protects the integrity and functioning of internal organ systems

• The psychosocial aspect of skin appearance is extremely important to a person’s well-being
Skin Characteristics and Functions

- Skin thickness ranges from 1/50 of an inch over the eyelids to 1/3 of an inch on the palms of the hands and the soles of the feet.

- Specialized skin cells harden to form nails and elongate to form hair.

- The pH of skin normally ranges from 4.5 to 5.5, thus providing the protective mantle of the skin, which serves to maintain the skin’s normal flora.
Vital Functions of the Skin

- Regulating body temperature
- Transmitting such sensations as touch, pressure, and pain
- Preventing excessive loss of body fluids
- Acting as an excretory organ
- Providing an interface between the body and its environment
- Protecting the inner tissues from invasion
Skin Layers- Epidermis

- Outermost layer of skin, which is thin and avascular
- Further divided into five structurally and functionally distinct layers
 - Stratum corneum
 - Stratum lucidum
 - Stratum granulosum
 - Stratum spinosum
 - Stratum germinativum (basal layer)
Skin Layers

Dermal-Epidermal Junction

• The dermal-epidermal junction provides structural support and allows exchange of fluids and cells between the skin layers

• The epidermis has an irregular surface, with downward fingerlike projections known as rete ridges or pegs

• These pegs of epidermis interface with upward projections of the dermis anchoring the epidermis to the dermis
Skin Layers
Dermal-Epidermal Junction

- As the skin ages, this dermal-epidermal junction tends to flatten, as the contacting surfaces of epidermis and dermis decrease by one-third.
- This loss increases the potential for dermal-epidermal separation and places older people at risk for skin tears.
Skin Layers

Dermis

• The layer of skin lying beneath the epidermis. It is highly vascular, tough connective tissue, containing nerves, lymphatics, sebaceous glands, and hair follicles.
Skin Layers
Subcutaneous Tissue

• This layer is made up of dense connective and adipose tissue

• It houses major blood vessels, lymphatics, and nerves; acts as a heat insulator; and provides a nutritional depot that is used during illness or starvation

• The subcutaneous fat also acts as a mechanical shock absorber and helps the skin move easily over the underlying structures
Skin Layers
Fascia

• Below the subcutaneous layer is a layer of superficial fascia, a type of dense, firm, membranous connective tissue which connects the skin to subjacent parts and facilitates movement.
Normal Skin
Blood Supply

- The vasculature of the dermis is the most expansive of any organ system
- The main purpose of this vast blood supply to the skin is to regulate body temperature
- The skin is oversupplied with blood when compared with its metabolic needs
- Muscle and fatty tissue do not tolerate ischemia or hypoxia, and are more susceptible to the effects of pressure than are the dermis and epidermis
Age-Related Changes

• Sweat glands diminish in number

• Epithelial and fatty layers of tissue atrophy and become thin

• Thickness of subcutaneous fat on the legs or forearms diminishes, even if abdominal or hip fat remains abundant

• Collagen and elastin shrink and degenerate
Age-Related Changes

- One result of the general loss of fat from the subcutaneous tissue is the relative prominence of the bony protuberances of the thorax, scapula, trochanters, and knees. The loss of this valuable padding contributes to the development of pressure ulcers.
Age-Related Changes

• Collagen content of the skin decreases by approximately 1% per year throughout adult life. The net effect of all these changes is thin, dry, and inelastic skin that is increasingly susceptible to separation of dermis and epidermis as minor friction or shearing forces cause an injury known as skin tear.
Pressure Ulcers

• Common terms used for tissue destruction resulting from prolonged pressure are “bedsore,” “decubitus ulcer,” “pressure sore” and “pressure ulcer.” Ulcers can form when a person constantly maintains any position causing pressure to a site.
Etiology of Pressure Ulcers

• Pressure ulcers usually occur in soft tissue over bony prominences that remain in contact with compressing surfaces

• Many other factors—primarily shear, friction, excessive moisture, and possibly infection—interact to mechanically damage soft tissue
Etiology of Pressure Ulcers

• Pressure ulcers are the clinical manifestation of local tissue death

• Cellular metabolism depends on blood vessels to carry nutrients to the tissues and to remove waste products

• When the soft tissue is subject to prolonged pressure and insufficient nutrients the result is cell death
Common Pressure Points

- **Supine Position**
 1. occiput
 2. scalpula
 3. sacrum
 4. heels

- **Lateral Position**
 1. ear
 2. acromion process
 3. elbow
 4. trochanter
 5. medial & lateral condyle
 6. medial & lateral malleolus
 7. heels

- **Prone Position**
 1. elbow
 2. ear, cheek, nose
 3. breasts (female)
 4. genitalia (male)
 5. iliac crest
 6. patella
 7. toes
Pressure

- Muscle is more sensitive to compression than skin
- The deeper muscle tissue may be necrotic before damage to the overlying skin is apparent
- The force of pressure increases as the affected body surface area decreases
Time-Pressure

- The normal response to prolonged pressure is a change in body position before tissue ischemia occurs.
- Low pressure endured for long periods of time is believed to be more significant in producing pressure ulcers than higher pressure of short duration.
- If the time-pressure threshold is reached or exceeded, tissue damage continues even after pressure is released.
Time-Pressure

• Pressure ulceration can result from one period of sustained pressure

• Most pressure ulcers occur secondary to repeated ischemic events without adequate time for recovery
Bony Prominences

- Pressure ulcers can form over any bony prominence or any area of soft tissue that is subjected to prolonged pressure

 - Sacrum
 - Coccyx
 - Ischial tuberosities
 - Greater trochanters
 - Elbows
 - Heels
 - Scapulae

 - Occipital bone
 - Sternum
 - Ribs
 - Iliac crests
 - Patellae
 - Lateral malleoli
 - Medial malleoli
SKIN ALERT

Stop, Check, Document

STOP

CHECK HOT SPOTS INFORM

DOCUMENT

Heels
Occiput
Toes
Acrum
Posterior buttock
Over bony prominences
Horacic spine
Capula
Contractures

• Untreated contractures may cause pressure ulceration

• A contracted limb may exert pressure on adjacent areas other than bony prominences

• A contracted limb may exert more pressure on the mattress than does a non-contracted limb
Pressure Gradient

• When blood vessels, muscle, subcutaneous fat, and skin are compressed between bone and the surface where an individual is lying or sitting, pressure is transmitted from the body surface toward the bone, and the bone exerts counter pressure. These opposing forces result in a cone-shaped pressure gradient.
Pressure Gradient

• Pressure affects all of the tissue between the external surface and the skeletal anatomy, but the greatest tissue destruction is at the bony interface

• *The wound one observes may be just the tip of the “iceberg.”*

• Because fat and muscle have little tolerance for decreased blood flow, they are less resistant than skin to pressure
Pressure Gradient

• Destruction in the subcutaneous tissues and muscle may be far worse than the surface damage indicates

• Assessment of pressure ulcer size must take into consideration the presence of unseen necrosis in the area of the pressure gradient
Shear

• Shear is a mechanical force that is parallel rather than perpendicular to an area with the main effect impacting deep tissues
• Elevating the head of the bed increases shear and pressure in the sacral and coccygeal areas
Shear

- The mechanical forces can obstruct or tear and stretch blood vessels

- Minimizing shearing forces involves raising the head of the bed to no more than a 30 degree angle, except for short periods of time (meals, meds, etc.)

- Shearing forces decreases the time tissue can remain under pressure—with shear present, vascular occlusion may occur at half the usual amount of pressure
Shear & Friction

- Shear injury will not be seen at the skin level because it happens beneath the skin.
- Shear and friction go hand in hand—one rarely occurs without the other.
- Friction is the force of two surfaces moving across one another.
- Friction injury will be visible.
Friction

- Erosion of surface tissue increases the potential for deeper tissue damage because friction is the precursor of shear.

- Those at risk for friction injuries:
 - Individuals who have spastic conditions
 - Patients who wear braces or appliances that rub against the skin
 - The elderly
Excessive Moisture

• Moist skin is **five times** as likely to become ulcerated as dry skin

• Constant exposure to wetness can waterlog or macerate the skin

• Macerated epidermis is easily eroded

• Wet skin surfaces increase the risk of friction as the patient is moved across the surface of the bed linen
Excessive Moisture

• Excessive moisture may be the result of perspiration, wound drainage, soaking during bathing, and fecal and/or urinary incontinence

• Maceration
Wound Healing

• Primary intention healing occurs when a wound has little or no tissue loss

• Delayed primary intention healing occurs when significant tissue loss can be repaired surgically with a skin or muscle graft

• Second intention describes the process of healing a wound without the benefit of surgical closure
Wound Healing

• The process of wound healing begins at the moment of injury and may continue for years

• No matter how trivial or extensive the wound, healing always includes three overlapping phases: inflammation, proliferation, and differentiation
Inflammatory Phase

• The main function is to initiate the wound-healing cascade, remove the debris, and prepare the wound for the regeneration of new tissue

• The inflammatory phase is characterized by local erythema, edema, and tenderness
Proliferative Phase

• The proliferative phase of wound healing overlaps the inflammatory phase
• It begins 2-4 days after wounding and lasts for approximately 15 or 16 days
• *The main events during this phase are deposition of connective tissue and collagen cross-linking which fills the wound with collagen and provides strength*
Proliferative Phase

Granulation

• During collagen production, new capillaries are forming as budlike structures

• Capillaries penetrate the wound and carry nutrients to the newly generating tissue

• Granulation tissue, when kept moist, provides good tissue for advancing epithelial cells

• As matures, the synthesis of collagen decreases, the new vascular channels regress, the wound transforms to a comparatively avascular, and cell-free scar tissue composed of dense collagen bundles
Epithelization

• Epithelial cells migrate from the wound margins across the wound surface to create a watertight seal over the wound
• Fibrin strands functions as a scaffolding over which the cells creep
• Sheets of new epithelial cells continue to grow until they come into contact with others moving across the wound from other directions
Epithelization

- **Primary healing** — fibrin closes the wound within a few hours and epithelization begins in 1-2 days.
- **Secondary healing** — migration of cells is rapid at first but gradually slows—days or weeks may elapse before epithelization is complete.
- If a *scab* is covering the wound surface, the epithelial cells must migrate underneath the scab.
Contraction

• The scar in a wound that has healed by secondary intention shrinks by a process called wound contraction

• It begins on about the fifth day

• Secondary intention healing continues for months or even years
Differentiation Phase

• The wound matures and the collagen in the scar undergoes repeated degradation and resynthesis.
• This is the longest phase of wound healing.
• The tensile strength of the scar increases.
• Between the 1st and the 14th day, tissues regain approximately 30% to 50% of their original strength.
• Tensile strength continues to increase to approximately 80% of normal tissue strength.
• **Wounds never completely regain the tensile strength of unwounded tissue**.
Phases of Wound Healing
Factors Affecting Healing

- Healing is influenced by systemic conditions or by local conditions in the wound

 - Tissue oxygenation
 - Stress
 - Advanced age
 - Nutrition
 - Infection
Tissue Oxygenation

• Oxygen is essential for wound healing

• Blood flow supplies the wound with oxygen and nutrients

• Blood flow removes carbon dioxide and metabolic by-products

• Any condition that reduces blood flow to a wound, such as arterial occlusion, vasoconstriction, or external pressure impedes healing
Stress

- Sympathetic nervous system and adrenal responses to stress (i.e. neural, hormonal, or metabolic changes) can impair wound healing.

- A plan that provides sleep and rest for the patient with a pressure ulcer will promote wound healing.
Advanced Age

• Aging affects almost all aspects of the healing response

• Slowing epidermal turnover and increasing skin fragility together reduce wound healing by a factor of four

• The repair rate declines with: falling rates of cell proliferation, lack of development of wound tensile strength, impaired collagen deposition and wound contraction
Advanced Age

- Medical conditions occur in many elderly persons which adversely affect healing
- The elderly tend to be malnourished and poorly hydrated, and have compromised respiratory and immune functions
- Loss of dermal and subcutaneous mass increases the risk for pressure-induced tissue injury
Malnutrition

• Wound healing and the immune response both require an adequate supply of various nutrients, including protein, vitamins, and minerals.

• Loss of more than 15% of lean body mass interferes with wound healing.

• Individuals with chronic wounds may need more protein and calories than the recommended daily allowances and may require dietary supplements.
Protein

• Low serum albumin levels are a late manifestation of protein deficiency

• Serum concentrations below 3.0 g/dl are an indicator of poor nutritional status

• Serum concentrations below 2.5 g/dl reflect severe protein depletion
Vitamins & Minerals

• Vitamin C
 • Deficiency is associated with impaired fibroblastic function and decreased collagen synthesis which delay healing and contribute to breakdown of old wounds
 • Deficiency causes loss of resistance to infection
 • Is water-soluble and cannot be stored in the body
Vitamins & Minerals

• Vitamin A
 • Associated with retarded epithelialization and decreased collagen synthesis
 • Deficiency is uncommon because it is fat-soluble and is stored in the liver

• Other vitamins, such as thiamine and riboflavin, are also necessary for collagen organization and the resultant tensile strength of the wound

• Various minerals, such as iron, copper, manganese, and magnesium play a role in wound healing
Barriers to Healing

• Corticosteroids—
 • Suppress the inflammatory response; inflammation is necessary to trigger the wound-healing cascade

• Steroid therapy begun after the inflammatory phase of healing (usually 4-5 days after wounding) has a minimal effect on wound healing
Barriers to Healing

• Smoking

 • Nicotine interferes with blood flow:
 • Is a vasoconstrictor
 • It increases platelet adhesiveness—causing clot formation

 • Cigarette smoke is a vasoconstrictor, and contains carbon monoxide and hydrogen cyanide
Barriers to Healing - Diabetes

• High levels of glucose compete with transport of ascorbic acid, which is necessary for the deposition of collagen, into cells

• Tensile strength and connective tissue production are significantly lower in diabetics

• Arterial occlusive disease can impair healing

• Reduced sensation may leave wounds undetected

• Patients with diabetes have more difficulty resisting infection and their wounds heal more slowly than non-diabetic patients
Infection

- Infectious complications of pressure ulcers include sepsis and osteomyelitis
- Debridement, drainage, and removal of the necrotic tissue alone controls most infections
- Open wounds do not have to be sterile to heal
- Healing cannot proceed until all necrotic tissue has been removed from the wound
- Parenteral antibiotics are indicated only when signs and symptoms suggest cellulitis, sepsis, or osteomyelitis
Wound Dehydration

- Wound healing occurs more rapidly when dehydration is prevented.

- Epidermal cells migrate faster and cover the wound surface sooner in a moist environment than under a scab.
Evaluation of Healing

• Use a systematic and consistent method to record wound assessments

• Examination should include:
 • Measurement of the wound’s length, width, and depth measured in centimeters or millimeters
 • Observation of inflammation, wound contraction, granulation, and epithelialization
Wound Healing

• Whenever possible, **the body should be allowed to heal itself**

• The best treatment is to support conditions that promote optimum healing—such as protection from trauma and maintaining a moist environment
Assessing Risk

- Number and type of medical diagnoses
- Presence of chronic health problems
- Chronologic age
- Immobility/ability to move independently
- Mental status/level of consciousness
- Nutritional status
- Incontinence
- Presence of infection
- Adequacy of circulation
Risk Factors

• **Immobility** probably is the greatest threat for pressure ulceration

• **Incontinence** increases the risk for pressure ulceration because it causes excessively moist skin and chemical irritation

• **Mental status** impairment may limit ability for self-care

• **Stress** causes the adrenal glands to increase production of glucocorticoids, which inhibit collagen production, and thereby increase the risk of pressure ulceration
Risk Factors - Nutritional

- Dental health
- Oral and GI history
- Chewing and swallowing ability
- Quality and frequency of foods eaten
- Involuntary weight loss or gain
- Serum albumin levels
- Nutritionally pertinent medications
- Psychosocial factors affecting nutritional intake
Risk Factors - Nutritional

- Laboratory tests—depressed serum protein, serum albumin, and transferrin levels together indicate poor nutritional status.

- Body weight—
 - At-risk patients should be weighed weekly.
 - Notify a physician, nurse, or dietitian if there is an unintended loss of 10 pounds or more during any 6-month period.
 - A change of 5% of body weight is predictive of a drop in serum albumin.
Risk Assessment Scales

• **The Norton Scale** –
 • Rates physical condition, mental state, activity level, patient mobility, and incontinence on a scale of 1 to 4
 • Total scores range from 5 to 20-- the lower the score the higher the risk of ulceration
 • Is simple and easy to use, but does not include nutrition
Risk Assessment Scales

- Braden Scale—The Braden Scale has six subscales divided into two categories:
 - Intensity and duration of pressure: mobility, activity, and sensory perception
 - Tissue tolerance: moisture, nutrition, and friction/shear

See Handouts
Skin Inspection

• Pressure interrupts blood flow and causes pallor
 • Pallor reflects tissue ischemia
 • Skin should quickly return to its normal color with relief from pressure as blood flow returns
• First External Sign of Ischemia—
 • The skin becomes reddened after the pressure is removed
 • Bright flush generally lasts from half to three-fourths the duration of ischemia
• Vessels are dilated and the amount of blood available increases for nutrition, oxygenation and removal of waste products
Skin Inspection

• **Blanchable erythema**—In light-skinned individuals
 • Compressing the reddened area causes the color to blanch or turn pale
 • Redness returns immediately after compression is relieved
 • Causes no long-term effect on the tissue; should return to its normal color within 24 hours

• In dark-skinned patients
 • Comparing skin on the contralateral side can help in assessment of subtle color changes
 • Palpate for increased warmth, a feeling of tightness, and areas of hardness under the skin
Skin Inspection

Non-Blanchable Erythema—this may be the first outward sign of tissue destruction. As the tissues are deprived of oxygen beyond the critical period, cells die. Non-blanchable erythema is reversible if it is recognized early and treated.
Assessing the Ulcer

• Pressure ulcers range from non-blanchable erythema of intact skin to deep destruction and loss of tissue
• Induration may extend far beyond the open wound
• Inspection alone may not reveal the extent of the ulcer, which may have spread extensively beneath the skin, undermining along fascial planes
Terms

• Induration: Tissue firmness that may occur around a wound margin

• Erythema: An inflammatory redness of the skin due to engorged capillaries

• Maceration: Softening of a tissue by soaking until the connective tissue fibers are so weakened that the tissue components can be teased apart
Terms

• Undermining: a tunneling effect or pocket occurring under the pressure ulcer edges or margins

• Slough: Nonviable tissue is loosely attached and characterized by string-like, moist, necrotic debris; yellow, green, or gray in color
Terms

• Eschar: Nonviable (dead) wound tissue characterized by a leathery, black crust covering an underlying necrotic process

• Granulation: Formation in wounds of soft, pink, fleshy projections consisting of new capillaries surrounded by fibrous collagen
Assessment of the Pressure Ulcer

- History: etiology, duration, prior treatment
- Anatomic location
- Stage
- Size: length, width, and depth measured in centimeters
- Extent: edges, sinus tracts, undermining, tunneling
- Exudate or drainage
- Necrotic tissue: slough and eschar
- Granulation tissue
- Epithelialization or new skin growth

See Handouts
Stage I Pressure Ulcer

• Intact skin with non-blanchable redness of a localized area
• This stage may be difficult to detect in a patient with darkly pigmented skin tones — Assess the surrounding area to observe differences in skin color
• Also assess the area for:
 • Pain
 • Warmth or coolness as compared with adjacent tissue
 • Firmness or softness as compared with adjacent tissue
Treatment: Stage I

- Remove the pressure
- Do not rub or massage prominence
- Do not use donuts
- Protect from moisture
- Monitor
- No dressings required
- Treat pain if present
Stage I
Stage II Pressure Ulcer

- Partial-thickness loss of dermis where you can see a shallow open ulcer with a red/pink wound bed, **without slough**

- May also present as an intact or open/ruptured serum filled blister

- NOTE: skin tears, tape burns, peri-area dermatitis, maceration should NOT be classified as stage II
Treatment: Stage II

- Remove pressure
- Keep clean
- Keep blister intact if possible
- Cover with light dressing if ulcer is open
 - Example: non-adherent gauze dressing changed every day
Stage II
Stage III Pressure Ulcer

- Full-thickness tissue loss; subcutaneous fat may be visible but bone, tendon, or muscle are not exposed

- Slough may be present

- May include undermining and tunneling under intact skin
Treatment: Stage III

• Remove pressure
• Eliminate slough
 • Autolytic, enzymatic or sharp debridement
• Manage exudate
 • Foam, alginate
• Monitor for infection
• Treat pain
Stage III
Stage IV Pressure Ulcer

• Full-thickness tissue loss with exposed bone, tendon, or muscle

• Slough & eschar may be present on some parts of the wound bed

• Often undermining and tunneling is present

• Exposed bone/tendon is visible or directly palpable
Treatment: Stage IV

- Remove pressure
- Eliminate slough or eschar
- Manage exudate
- Treat pain
- Monitor for infection
 - Osteomyelitis
 - Septicemia
 - Cellulitis
 - Abscess
Stage IV
Stage IV
Unstageable Pressure Ulcer

- Full thickness tissue loss in which the base of the ulcer is covered by slough (yellow, tan, gray, green or brown) and/or eschar (tan, brown or black) in the wound bed

- Note: Until enough slough and/or eschar is removed to expose the base of the wound, the true depth, and therefore stage, cannot be determined
Treatment: Unstageable

- Remove pressure
- Eliminate slough and/or eschar
 - Hydrogel application to soften, sharp debridement
 - Never debride dry, stable, non-fluctuant heel ulcer
- Restage once all slough and/or eschar has been removed
- Manage exudate
- Monitor for infection
- Treat pain
Unstageable
Deep Tissue Injury

- Purple or maroon localized area of discolored intact skin or blood-filled blister due to damage of underlying soft tissue from pressure and/or shear

- Evolution may include a thin blister over a dark wound bed
Treatment: Deep Tissue Injury

• Remove pressure
• Monitor for opening of wound
• Treat pain
• Protect from moisture
Deep Tissue Injury
Pressure ulcers are **NOT** restaged at each assessment. They are staged only once unless a deeper layer of tissue becomes exposed.
Dressing Types

• Gauze
 • Limited role in modern wound care
 • Good for infected wounds that require frequent dressing changes
 • Not effective to promote moist wound healing
Dressing Types

• Transparent Films
 • Allow O2 to penetrate wound and release wound moisture
 • Helps with autolytic debridement
 • Good for partial thickness wounds stage I & II
 • Not suitable for heavy draining wounds
Dressing Types

- Foam
 - Non-occlusive dressing
 - Highly absorbent
 - Less frequent dressing changes—up to 7 days
 - Use on draining stage II-IV
 - Don’t use on dry wounds
Dressing Types

• Hydrocolloids
 • Contain gelatin or pectin that swells with exudate
 • Waterproof—helps with autolytic debridement
 • Use on shallow stage II pressure ulcers
 • Can trap moisture under the dressing causing maceration
 • Particles of the dressing can become lodged in the wound bed
Dressing Types

• Hydrogel
 • Viscous amorphous gels
 • Applied to base of the wound to soften eschar
 • Use in wounds that are dry, contain hard eschar
 • Provide some soothing, pain relieving properties
 • Consists mostly of hypertonic saline
 • Require secondary dressing
Dressing Types

- Alginates
 - Seaweed based woven fibers form a gel like material when they come in contact with exudate
 - Highly absorbent
 - Can be left in wound bed for several days
 - Require a secondary dressing
 - Good on highly draining stage III and IV ulcer
 - Can break into pieces left in wound and shouldn’t be used on dry wounds
Silver

- Historically antimicrobial
- Currently being put into many wound care products
- Not effective in eliminating bioburden
- Can stain the skin
- Difficult to get insurance to pay
Honey

- Medical grade honey
- Promotes moist wound healing
- Supports autolytic debridement
- Helps to lower pH of a wound which can increase healing
Assessing Complications

• Complications can delay healing and may become life-threatening

• All pressure ulcers are colonized with bacteria

• Debridement and adequate cleansing prevent the ulcer from becoming infected in most cases

• Swab cultures of the wound surface should not be used to identify infecting organisms
Assessing Complications

• **Ulcer infection**
 • Is recognized by the classic signs of redness, fever, pain and edema
 • The cardinal sign is advancing cellulitis

• **Sepsis**
 • May originate from infected pressure ulcers of any stage
 • Blood culture is the only way to identify the pathogen
Assessing Complications

• **Osteomyelitis** (infection involving the bone)
 • Is likely in stage IV ulcers
 • Delays healing, causes extensive tissue damage, and is associated with a high mortality rate
 • A bone biopsy and culture are necessary for diagnosis
 • If the patient’s white blood cell count, erythrocyte sedimentation rate, and plain X-ray are all positive, osteomyelitis is likely
Prevention

- Nutritional management
- Managing pressure
- Skin care
- Monitoring changes in risk status
Nutritional Management

• The nutritional goal is a diet containing adequate nutrients to maintain tissue integrity

 • Monitor for signs of vitamin and mineral deficiencies—provide a daily high-potency vitamin and mineral supplement

 • Supplement or support the intake of protein and calories—healthy adults need one to two 3-ounce servings of meat, milk, cheese or eggs each day; a malnourished patient may require as much as 2 grams of protein per kilogram of body weight daily
Manage Pressure

• Pressure management entails the awareness of proper body positioning, recognizing the importance of turning and repositioning, and choosing suitable support surfaces for sleeping and sitting
Body Positioning

• In Bed
 • Do not position an individual on skin that is already reddened by pressure
 • Donut-shaped products reduce the blood flow to an even wider area of tissue
 • Pillow placement and bridging can help reduce pressure
 • Do not place an individual directly on the greater trochanter
 • Heels should be suspended to avoid pressure
 • The head of the bed should be raised as little as possible (no more than 30°)
Turning and Repositioning

• Healthy people change position as frequently as every 15 minutes

• Those unable to reposition themselves should be repositioned frequently enough to allow any reddened areas of skin to recover from pressure

• Repositioning should happen at least every 2 hours while in bed and at least every hour when in a wheelchair

• Never sit on personal items such as keys, pens, phone, etc.
Turning and Repositioning

• To avoid effects of friction and shear forces
 • Lift rather than drag individuals across the bed surface
 • Have the individuals wear socks and long sleeves to protect heels and elbows
Turning and Repositioning

• Sitting—carries the greatest risk of pressure ulcers.
 • Good body posture and alignment helps minimize the pressure on susceptible surfaces
 • Thighs should be horizontal so the weight is evenly distributed
 • If the knees are higher than the hips, body weight concentrates on the ischial tuberosities
 • Adequate support of the ankles, elbows, forearms, and wrist in a neutral position reduces risk
 • Separate knees so they do not rub together
Support Surfaces

• Using pillows to bridge vulnerable areas is an effective way to eliminate pressure.
Support Surfaces

• Many beds, mattresses, and cushions are available to help reduce the intensity of pressure

• Pressure reducing surfaces include:
 • Foam, gel, water, and air mattresses
 • Alternating pressure pads
 • Low-air-loss, high-air-loss, and oscillating beds
 • Turning frames
Support Surfaces
Mattress Overlays

• Foam, air, and gel products are the most commonly used tools to prevent pressure ulcers
• Two-inch foam mattress overlays only increase comfort; they do not reduce risk for pressure ulceration
• **Overlays are useless if** the weight of the body fully compresses them and **they “bottom out”**
 • **Hand Check**—slide the hand between the mattress overlay and the underlying mattress
Support Surfaces - Mattresses

- Pressure-reducing foam-core mattresses can help reduce the incidence of pressure ulcers.

- If incontinence, wound drainage, or perspiration is increasing the risk for pressure ulceration, a support surface that flows air across the skin helps keep the skin dryer and a portable low-air-loss mattress may be helpful.
Skin Care

• Massaging reddened areas of skin over bony prominences may reduce blood flow and cause tissue damage

• With older adults, gentle handling can reduce the likelihood of skin tears

• Advancing age is closely associated with skin dryness. Central or room humidifiers can significantly reduce the detrimental effect of low humidity
Cleansing the Skin

• Frequent bathing may remove the natural barrier and increase skin dryness

• The temperature of bath water should be slightly warm

• Use gentle washing with a soft cloth and patting the skin dry with a soft towel
Moisturizing the Skin

• It is important to keep the skin well lubricated
• Topical agents relieve the signs and symptoms of dry skin
 • **Lotions**—highest water content, evaporate the most quickly and, need to be reapplied the most frequently
 • **Creams**—preparations of oil in water; more occlusive than lotions; need to be applied about **four times daily** for maximum effectiveness.
 • **Ointments**—mixtures of water in oil, the most occlusive, and provide the longest lasting effect on skin moisture
Protecting the Skin

• Skin that is waterlogged from constant wetness is more easily eroded by friction, more permeable to irritants, and more readily colonized by microorganisms than normal skin.

• Urinary and fecal incontinence create problems from excessive moisture and chemical irritation.
Summary

• Healthy skin requires a holistic approach
• Pressure must be managed
• Routine skin inspection is a must
• If a pressure ulcer develops, one must first find the source and relieve the pressure
• Stage and manage any wound
• Use a team approach
• Monitor
Thank You

Wilhelmy, Jennifer, RN, CWCN, CNP. “Save our Skin Heal our Holes: The basics of pressure ulcer prevention and wound care. DDNA National Conference 2014.