Personal Statement
The Rosas Lemus laboratory is interested in understanding metabolic host-pathogen interactions. Pathogens modify the metabolism of the host to reproduce leading to the establishment of infectious diseases. Coronaviruses cause zoonotic diseases, and the most recent highly pathogenic coronavirus SARS-CoV-2 caused one of the biggest human health threats of the modern era. Although some treatments and vaccines are now available, we do not have enough mechanisms to deal with antimicrobial resistance and new emerging variants or new Coronaviruses. Understanding specific metabolic coronavirus-host interactions we might reveal new conserved pharmacological targets to treat current and new Coronavirus diseases. Our laboratory uses biochemistry, cell biology and structural biology to study the structure, regulation and protein-protein interactions from the viral capping pathway, host S-adenosylmethionine, glycolysis and oxidative phosphorylation.
Other interest are the study of the metabolism and mechanisms of antimicrobial resistande of highly antimicrobial resistant bacteria such as Clostridioides difficile, Pseudomonas aeruginsa and Escherichia Coli.
Areas of Specialty
Biochemistry
Metabolism
Structural Biology
Infectious Diseases
Antimicrobial Resistance
Education
B. S. Degree in Chemistry, Universidad Nacional Autonoma de Mexico.
M.S. Degree in Biochemistry, Universidad Nacional Autonoma de Mxico, Mxico City, Mexico.
PhD Degree in Biochemistry, Universidad Nacional Autonoma de Mxico, Mxico City, Mexico.
PhD Internship, Universit de Bordeaux, Bordeaux, France.
Postdoctoral fellowship, Illinois Institute of Technology, Chicago, IL, USA.
Postdoctoral fellowship, Northwestern University, Chicago, IL, USA.
Achievements & Awards
AIM CoBRE mentored PI (2003-2006)
Lab Members:
Rebekah Grydley (Research Technician)
Lab Alumni
Ella Eleven (Summer student/ New Mexico Tech, New Mexico)
Research and Scholarship
Key Publicatios
SARS-CoV-2
Mn2+ coordinates Cap-0-RNA to align substrates for efficient 2'-O-methyl transfer by SARS-CoV-2 nsp16.Minasov G, Rosas-Lemus M, Shuvalova L, Inniss NL, Brunzelle JS, Daczkowski CM, Hoover P, Mesecar AD, Satchell KJF.Sci Signal. 2021 Jun 29;14(689):eabh2071. doi: 10.1126/scisignal.abh2071.PMID: 34131072
High-resolution structures of the SARS-CoV-2 2'-O-methyltransferase reveal strategies for structure-based inhibitor design.Rosas-Lemus M, Minasov G, Shuvalova L, Inniss NL, Kiryukhina O, Brunzelle J, Satchell KJF.Sci Signal. 2020 Sep 29;13(651):eabe1202. doi: 10.1126/scisignal.abe1202.PMID: 32994211
Serodominant SARS-CoV-2 Nucleocapsid Peptides Map to Unstructured Protein Regions.Vandervaart JP, Inniss NL, Ling-Hu T, Minasov G, Wiersum G, Rosas-Lemus M, Shuvalova L, Achenbach CJ, Hultquist JF, Satchell KJF, Bachta KER.Microbiol Spectr. 2023 Jun 15;11(3):e0032423. doi: 10.1128/spectrum.00324-23. Epub 2023 May 16.PMID: 37191546
Antimicrobial resistance
Protein target highlights in CASP15: Analysis of models by structure providers.Alexander LT, Durairaj J, Kryshtafovych A, Abriata LA, Bayo Y, Bhabha G, Breyton C, Caulton SG, Chen J, Degroux S, Ekiert DC, Erlandsen BS, Freddolino PL, Gilzer D, Greening C, Grimes JM, Grinter R, Gurusaran M, Hartmann MD, Hitchman CJ, Keown JR, Kropp A, Kursula P, Lovering AL, Lemaitre B, Lia A, Liu S, Logotheti M, Lu S, Mark£sson S, Miller MD, Minasov G, Niemann HH, Opazo F, Phillips GN Jr, Davies OR, Rommelaere S, Rosas-Lemus M, Roversi P, Satchell K, Smith N, Wilson MA, Wu KL, Xia X, Xiao H, Zhang W, Zhou ZH, Fidelis K, Topf M, Moult J, Schwede T.Proteins. 2023 Jul 26. doi: 10.1002/prot.26545. Online ahead of print.PMID: 37493353
Functional and Structural Characterization of OXA-935, a Novel OXA-10-Family ?-Lactamase from Pseudomonas aeruginosa.Pincus NB, Rosas-Lemus M, Gatesy SWM, Bertucci HK, Brunzelle JS, Minasov G, Shuvalova LA, Lebrun-Corbin M, Satchell KJF, Ozer EA, Hauser AR, Bachta KER.Antimicrob Agents Chemother. 2022 Oct 18;66(10):e0098522. doi: 10.1128/aac.00985-22. Epub 2022 Sep 21.PMID: 36129295
Structure of galactarate dehydratase, a new fold in an enolase involved in bacterial fitness after antibiotic treatment.Rosas-Lemus M, Minasov G, Shuvalova L, Wawrzak Z, Kiryukhina O, Mih N, Jaroszewski L, Palsson B, Godzik A, Satchell KJF.Protein Sci. 2020 Mar;29(3):711-722. doi: 10.1002/pro.3796. Epub 2019 Dec 17.PMID: 31811683
Bioenergetics and metabolism
The role of glycolysis-derived hexose phosphates in the induction of the Crabtree effect.Rosas Lemus M, Roussarie E, Hammad N, Mougeolle A, Ransac S, Issa R, Mazat JP, Uribe-Carvajal S, Rigoulet M, Devin A.J Biol Chem. 2018 Aug 17;293(33):12843-12854. doi: 10.1074/jbc.RA118.003672. Epub 2018 Jun 15.PMID: 29907566
The Crabtree and Warburg effects: Do metabolite-induced regulations participate in their induction?Hammad N, Rosas-Lemus M, Uribe-Carvajal S, Rigoulet M, Devin A.Biochim Biophys Acta. 2016 Aug;1857(8):1139-1146. doi: 10.1016/j.bbabio.2016.03.034. Epub 2016 Apr 9.PMID: 27066942
In Saccharomyces cerevisiae fructose-1,6-bisphosphate contributes to the Crabtree effect through closure of the mitochondrial unspecific channel.Rosas-Lemus M, Uribe-Alvarez C, Chiquete-Flix N, Uribe-Carvajal S.Arch Biochem Biophys. 2014 Aug;555-556:66-70. doi: 10.1016/j.abb.2014.05.027. Epub 2014 Jun 9.PMID: 24924491